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Do we still need better algorithms?

Figure: Evolution of Machines & Algorithms for solving 3D Poisson
Equation (Adapted from Deville)
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What is scalable?

Figure: More difficult problems

Figure: At increased resolution
(Image by Duffy)

Figure: Solved efficiently as the
number of processors increase.
(Image by Donzis)
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Steady Fluid Model

Incompressible Navier-Stokes Equations

− 1
Re∇

2~u + (~u · ∇)~u +∇p = f
∇ · ~u = 0

in Ω

~u = ~uD on ∂ΩD, ν
∂~u
∂n
− ~np = 0 on ∂ΩN .
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Spectral Element Method

The solution is expressed via a nodal basis on each element

uN
e (x , y) =

N+1∑
i=1

N+1∑
j=1

uijπi(x)πj(y).
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Discrete Nonlinear Block System

[
N(u) −DT

−D 0

](
u
p

)
=

(
Mf
0

)

N(u) - Nonlinear Convection-Diffusion
DT - Gradient
D - Divergence
M - Mass Matrix
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Overview
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Block Preconditioner

Linearize & take upper block of LU factorization[
F −DT

−D 0

]
︸ ︷︷ ︸

A

=

[
I 0

−DF−1 I

] [
F −DT

0 −S

]
.

Approximate F and S to make computationally efficient [1]

[
F̄ −DT

0 −Ŝ

]
︸ ︷︷ ︸

P

.
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Ŝ: Least-Squares Commutator

S := DF−1DT = (DF−1M)(M−1F )(M−1DT ) ≈ DM−1DT FpMp

Ŝ := (DM−1DT )(DM−1FM−1DT )−1(DM−1DT )

Ŝ−1 = (DM−1DT )−1︸ ︷︷ ︸
Poisson Solve

(DM−1FM−1DT ) (DM−1DT )−1︸ ︷︷ ︸
Poisson Solve
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F̄ : Exploit High Volume-Surface ratio


F̄ 1

II 0 . . . 0 F̄ 1
IΓ

0 F̄ 2
II 0 . . . F̄ 2

IΓ
...

. . . . . . . . .
...

0 0 . . . F̄ E
II F̄ E

IΓ
0 0 . . . 0 F̄S




uI1

uI2

...
uIE

uΓ

 =


b̂I1

b̂I2

...
b̂IE

gΓ

 .
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Make volume calculations Fast [2]

F̄interface =
∑E

e=1(F̄ e
ΓΓ − F̄ e

ΓI F̄ e
II
−1 F̄ e

IΓ)

F̄ e−1
interior = M̃(Vy ⊗ Vx )(Λy ⊗ I + I ⊗ Λx )−1(V−1

y ⊗ V−1
x )M̃︸ ︷︷ ︸

Diagonalized via 1D operators!
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Polynomial Degree depenedence case study:
Kovasznay Flow

Polynomial Nonlinear Linear F̄−1 Ŝ−1

degree N steps steps steps steps
4 11 53 4 33
8 13 42 5 32

12 16 29 6 54

Table: Linear steps decrease with N.
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Element dependence case study: Flow over a step.

E Nonlinear Linear F̄−1 Ŝ−1

steps steps steps steps
16 7 33 14 20
64 7 28 32 28

256 6 34 86 38

Table: F̄−1 is mildly dependent on E
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Reynolds number dependence case study: Lid-Driven
Cavity

Re Nonlinear Linear F̄−1 Ŝ−1

steps steps steps steps
10 5 30 186 200

100 7 42 141 200
1000 11 96 119 200
5000 20 240 107 200

Table: Works well. Can do better by
improving Ŝ−1 solve.
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Review
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Conclusions

Summary
• Developed fast steady flow solver via spectral elements [3]
• Based on block preconditioner using LSC & DD
• Displays mild dependence on mesh size and Re

Current Work
• Accelerating Ŝ Poisson Solves with DD
• Extending to Binary Alloys with Jeff McFadden @ NIST
• Applying to Climate Model with Kate Evans @ ORNL
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